

QPX for Lattice QCD

James C. Osborn Argonne Leadership Computing Facility

Mira Boot Camp May 20, 2015

Subatomic particles

Quantum Chromodynamics (QCD)

- fundamental theory of strong nuclear force
- part of the Standard Model of particle physics (with electromagnetism and weak nuclear force)
- strongly interacting (at low energies, i.e. nuclei)
 - can't reliably calculate quantities analytically
 - must resort to computer simulations
- requires large scale resources to perform calculations to desired accuracy

Major goals

- Precision tests of Standard Model and searches for new physics
- Understand matter at high temperatures and densities
- Determine properties of particles (structure of proton, etc.)

Dirac equation

- Main expense is solving Dirac equation
- First order PDE in 4 dimensions
- Quarks represented by length 3 complex vectors on sites
- Gluon fields are 3x3 complex matrices on links
- Simplest discretization: gather quark fields from neighbors, multiply by gluons along links

QCD kernel

Calculate

- u[i] 3x3 complex matrix (18 reals)
- x[i], *y[i] length 3 complex vector (6 reals)
- QPX length 4 vector
 - Unroll loop by 2

QCD kernel unrolled

x[i](0)	+=	u[i](0,0)	u[i](0,1)	u[i](0,2)	X	y[i](0)
x[i](1)		u[i](1,0)	u[i](1,1)	u[i](1,2)		y[i](1)
x[i](2)		u[i](2,0)	u[i](2,1)	u[i](2,2)		y[i](2)
x[i+1](0)		u[i+1](0,0)	u[i+1](0,1)	u[i+1](0,2)		y[i+1](0)
x[i+1](1)		u[i+1](1,0)	u[i+1](1,1)	u[i+1](1,2)		y[i+1](1)
x[i+1](2)		u[i+1](2,0)	u[i+1](2,1)	u[i+1](2,2)		y[i+1](2)

- Keep results contiguous in vector register
- Start with
 {x[i](0),x[i](1)} += {u[i](0,0),u[i](1,0)} * {y[i](0),y[i](0)}
 vec_ld() vec_ld()+vec_perm() vec_ld2()

Complex fused multiply add

QPX has good support for complex arithmetic

```
z=a*b+c: z=vec\_xmadd(a,b,c); z=vec\_xxnpmadd(b,a,z)

z=c+real(a)*b z+=i*imag(a)*b
```

- Second operation has dependency on first
- Can remove with one extra add at end of dependency chain

```
z1 = vec_xmul(a1,b1); z2 = vec_xxnpmadd(b1,a1,c)
z1 = vec_xmadd(a2,b2,z1); z2 = vec_xxnpmadd(b2,a2,z2)
z1 = vec_xmadd(a3,b3,z1); z2 = vec_xxnpmadd(b3,a3,z2)
z = vec_add(z1,z2)
```


Other issues

- Ensure data is properly aligned: 16 (float) or 32 (double) bytes
 - vec_ld assumes data is aligned, will round address down if not
 - Use vec_lda if unsure (will generate SIGBUS if not aligned)
- Declare absence of aliasing (if true)
 - C99 restrict keyword
 - XIc: "#pragma disjoint(a,b)"
- Round results before storing in single precision (if needed)
 - Storing double precision vector registers to float array truncates
 - Need to explicitly round to single (vec_rsp)

Summary

- Good news
 - QPX has rich set of operations (load,store,permute,(x)madd)
 - Can do even complicated arithmetic patterns with relatively low overhead for additional rearrangement of data
 - Can get good performance without need to reorder data
- Bad news
 - Requires care with alignment, aliasing, dependencies (not too bad, but requires work)
 - Vector units getting bigger (8-16 wide)
 - Array of Structures layouts will become more difficult to deal with in future
- BG/Q makes a good platform for transitioning code from past styles (AoS, MPI-only) to future coding styles (SoA, MPI+OpenMP)
 - Legacy code still works fine (possibly with some optimization effort)
 can still see benefit from redesigning code

Performance on BG/Q full Dirac solver 512 nodes, single precision

